skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jordan, Tom A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract An array of information about the Antarctic ice sheet can be extracted from ice-sheet internal architecture imaged by airborne ice-penetrating radar surveys. We identify, trace and date three key internal reflection horizons (IRHs) across multiple radar surveys from South Pole to Dome A, East Antarctica. Ages of ~38 ± 2.2, ~90 ± 3.6 and ~162 ± 6.7 ka are assigned to the three IRHs, with verification of the upper IRH age from the South Pole ice core. The resultant englacial stratigraphy is used to identify the locations of the oldest ice, specifically in the upper Byrd Glacier catchment and the Gamburtsev Subglacial Mountains. The distinct glaciological conditions of the Gamburtsev Mountains, including slower ice flow, low geothermal heat flux and frozen base, make it the more likely to host the oldest ice. We also observe a distinct drawdown of IRH geometry around South Pole, indicative of melting from enhanced geothermal heat flux or the removal of deeper, older ice under a previous faster ice flow regime. Our traced IRHs underpin the wider objective to develop a continental-scale database of IRHs which will constrain and validate future ice-sheet modelling and the history of the Antarctic ice sheet. 
    more » « less
  2. Abstract East Antarctic provinces lay at the heart of both Rodinian and Gondwanan supercontinents, yet poor exposure and limited geophysical data provide few constraints on the region’s tectonic evolution. The shape of the Mawson Continent, the stable nucleus of East Antarctica, is one of Antarctica’s most important, but contested features, with implications for global plate reconstructions and local tectonic models. Here we show a major marginal embayment 500–700 km wide, cuts into the East Antarctic basement in the South Pole region. This embayment, defined by new aeromagnetic and other geophysical data, truncates the Mawson Continent, which is distinct from basement provinces flanking the Weddell Sea. We favour a late Neoproterozoic rifting model for embayment formation and discuss analogies with other continental margins. The embayment and associated basement provinces help define the East Antarctic nucleus for supercontinental reconstructions, while the inherited marginal geometry likely influenced evolution of the paleo-Pacific margin of Gondwana. 
    more » « less
  3. Abstract. Radio-echo sounding (RES) has revealed an internal architecture within Antarctica’s ice sheets that records their depositional, deformational and melting histories. Crucially, spatially-widespread RES-imaged internal-reflecting horizons, tied to ice-core age-depth profiles, can be treated as isochrones that record the age-depth structure across the Antarctic ice sheets. These enable the reconstruction of past climate and ice-dynamical processes on large scales, which are complementary to but more spatially-extensive than commonly used proxy records across Antarctica. We review progress towards building a pan-Antarctic age-depth model from these data by first introducing the relevant RES datasets that have been acquired across Antarctica over the last six decades (focussing specifically on those that detected internal-reflecting horizons), and outlining the processing steps typically undertaken to visualise, trace and date (by intersection with ice cores, or modelling) the RES-imaged isochrones. We summarise the scientific applications to which Antarctica’s internal architecture has been applied to date and present a pathway to expanding Antarctic radiostratigraphy across the continent to provide a benchmark for a wider range of investigations: (1) Identification of optimal sites for retrieving new ice-core palaeoclimate records targeting different periods; (2) Reconstruction of surface mass balance on millennial or historical timescales; (3) Estimates of basal melting and geothermal heat flux from radiostratigraphy and comprehensively mapping basal-ice units, to complement inferences from other geophysical and geological methods; (4) Advancing knowledge of volcanic activity and fallout across Antarctica; (5) The refinement of numerical models that leverage radiostratigraphy to tune time-varying accumulation, basal melting and ice flow, firstly to reconstruct past behaviour, and then to reduce uncertainties in projecting future ice-sheet behaviour. 
    more » « less
  4. null (Ed.)
    Abstract. Ice shelves play a critical role in the long-termstability of ice sheets through their buttressing effect. The underlyingbathymetry and cavity thickness are key inputs for modelling future icesheet evolution. However, direct observation of sub-ice-shelf bathymetry istime-consuming, logistically risky, and in some areas simply not possible.Here we use new compilations of airborne and marine gravity, radar depthsounding, and swath bathymetry to provide new estimates of sub-ice-shelfbathymetry outboard of the rapidly changing West Antarctic Thwaites Glacierand beneath the adjacent Dotson and Crosson ice shelves. This region is ofspecial interest, as the low-lying inland reverse slope of the ThwaitesGlacier system makes it vulnerable to marine ice sheet instability, withrapid grounding line retreat observed since 1993 suggesting this process maybe underway. Our results confirm a major marine channel >800 mdeep extends tens of kilometres to the front of Thwaites Glacier, while theadjacent ice shelves are underlain by more complex bathymetry. Comparison ofour new bathymetry with ice shelf draft reveals that ice shelves formedsince 1993 comprise a distinct population where the draft conforms closelyto the underlying bathymetry, unlike the older ice shelves, which show a moreuniform depth of the ice base. This indicates that despite rapid basalmelting in some areas, these recently floated parts of the ice shelf are notyet in dynamic equilibrium with their retreated grounding line positions andthe underlying ocean system, a factor which must be included in futuremodels of this region's evolution. 
    more » « less
  5. Abstract George VI Sound is an ~600 km‐long curvilinear channel on the west coast of the southern Antarctic Peninsula separating Alexander Island from Palmer Land. The Sound is a geologically complex region presently covered by the George VI Ice Shelf. Here we model the bathymetry using aerogravity data. Our model is constrained by water depths from seismic measurements. We present a crustal density model for the region, propose a relocation for a major fault in the Sound, and reveal a dense body, ~200 km long, flanking the Palmer Land side. The southern half of the Sound consists of two distinct basins ~1,100 m deep, separated by a −650 m‐deep ridge. This constricting ridge presents a potential barrier to ocean circulation beneath the ice shelf and may account for observed differences in temperature‐salinity (T‐S) profiles. 
    more » « less
  6. null (Ed.)
    Abstract. The geometry of the sea floor immediately beyondAntarctica's marine-terminating glaciers is a fundamental control onwarm-water routing, but it also describes former topographic pinning pointsthat have been important for ice-shelf buttressing. Unfortunately, thisinformation is often lacking due to the inaccessibility of these areas forsurvey, leading to modelled or interpolated bathymetries being used asboundary conditions in numerical modelling simulations. At Thwaites Glacier(TG) this critical data gap was addressed in 2019 during the first cruise ofthe International Thwaites Glacier Collaboration (ITGC) project. We present more than 2000 km2 of new multibeamecho-sounder (MBES) data acquired in exceptional sea-ice conditionsimmediately offshore TG, and we update existing bathymetric compilations.The cross-sectional areas of sea-floor troughs are under-predicted by up to40 % or are not resolved at all where MBES data are missing, suggesting thatcalculations of trough capacity, and thus oceanic heat flux, may besignificantly underestimated. Spatial variations in the morphology oftopographic highs, known to be former pinning points for the floating iceshelf of TG, indicate differences in bed composition that are supported bylandform evidence. We discuss links to ice dynamics for an overriding icemass including a potential positive feedback mechanism where erosion ofsoft erodible highs may lead to ice-shelf ungrounding even with littleor no ice thinning. Analyses of bed roughnesses and basal drag contributionsshow that the sea-floor bathymetry in front of TG is an analogue for extantbed areas. Ice flow over the sea-floor troughs and ridges would have beenaffected by similarly high basal drag to that acting at the grounding zonetoday. We conclude that more can certainly be gleaned from these 3Dbathymetric datasets regarding the likely spatial variability of bedroughness and bed composition types underneath TG. This work also addressesthe requirements of recent numerical ice-sheet and ocean modelling studiesthat have recognised the need for accurate and high-resolution bathymetry todetermine warm-water routing to the grounding zone and, ultimately, forpredicting glacier retreat behaviour. 
    more » « less